

Creating Web Apps
Job Aid

Setup Project Folder Structure
Developers should use their own discretion when

creating folder structures. For our development

following folder structure needs to be in place:

Script.JS Page
The generic code for the js page should be

included in our customer’s js page.

The following code need to be update:

client.init(“yourAppID”, function()

The default placeholder text of yourAppID needs

to be replaced with the AppID from the project in

the Agora Console.

client.join(“yourToken”, “myChannel”, null, (uid)

The default placeholder text for the following

needs to be updated:

• yourToken: Copy and replace this text with

the Token information from the Agora

Console.

• myChannel: Update this text with the

Channel information from the Agora

Console.

let client = AgoraRTC.createClient({

 mode: “rtc”,

 codec: “vp8”,

});

Depending on the situation, the option for the

Mode and the Codec may need to change:

• Mode:

o Use rtc for communication

optimization for one-to-one or one-

to-many video and audio calls.

o Use live for broadcast optimization

for one-to-many video and audio

broadcasts (where one-to-one)

communication is not occurring.

• Codec:

o Use vp8 for most situations.

o Use h264 for Apple Safari Version

12.1 or older.

Index.HTML Page
Developers will have a significant amount of additional

code in this page, but the following elements are

needed:

 <link rel=”stylesheet” href=”./styles/style.css”>

This links the page to a style sheet for formatting

control. If this is not present, other style information

needs to be on the page.

<script scr=”./scripts/script.js”></script>

This code links the page to a different scripts page

allowing the developer to update key options.

<script src=”./AgoraRTCSDK-3.5.2.js”></script>

Links to the Software Development Kit (SDK) used to

run the app. This needs to be after the </body>

element. It will appear like this:
</body>

<script src=”./AgoraRTCSDK-3.5.2.js”></script>

</html>

Style.CSS Page
The developer will have many entries on this page than

what we have by default. There are some key entries

that need to be present or accounted for:

#me video Container where video plays.
#remote-container video Container where PiP plays.

Project >

Styles > style.css

Scripts > script.js

index.html

AgoraRTCSDK-3.5.2.js

 Job Aid: Creating Web Apps

Version 1.0 April 28, 2021 P a g e | 2

Script.JS Page Stream Settings

Local Stream
1. Locate the following code:

client.join(“yourToken”, “myChannel”, null,

(uid)

2. Add the following immediate after {

let localStream = AgoraRTC.createStream({

audio: true,

video: false, });

// Initialize the local stream

localStream.init(()=>{

// Play the local stream

localStream.play("me");

// Publish the local stream

client.publish(localStream, handleError);

}, handleError);

3. Save the file.

Remote Stream
By default, the script.js and the SDK are configured

for remote streaming. The SDK will look for and

triggers the stream-added event. Then, it will attempt

to connect to the stream based on the script.js file.

This is based on the AppID, Channel, and Token

information updated in the script.js file.

Testing Projects

We recommend that all testing is completed through a local web server. Depending on our customer’s

configuration, they will need to launch this locally using their IT standards and protocols. Where possible, we

recommend using NPM live package server. Refer to Setting Up NPM Server for more information.

 Notes:

Running the web app through a local server (localhost) is for testing purposes only. In production, ensure that

you use the HTTPS protocol when deploying your project.

Due to security limits on HTTP addresses except 127.0.0.1, Agora Web SDK only supports HTTPS or

http://localhost (http://127.0.0.1). Do not deploy your project over HTTP.

1. Open Terminal.

2. Type the following command in the terminal to the install live-sever: npm I live-server -g

3. Change the directory to your project. Use the cd commands such as cd c:/project.

4. Type the following command to run the app: live-server.

5. When prompted, allow the browser to access your microphone.

6. Open a new tab and copy/paste the URL from the original tab to the new tab.

7. Test the app. You should hear echo.

